
Deep Think with Confidence

Jiawei Zhao

Research Scientist, Meta FAIR

Leveraging Internal Signals for Efficient LLM Reasoning

Conversational AI Content Generation AI Agents

Reasoning Planning

Neural Networks - Foundation Models

Large Language Models for Complex
Reasoning
• Current capabilities:

• Mathematical problem solving (AIME)

• Code generation and debugging

• Scientific hypothesis formation

• Multi-step logical reasoning

What is LLM Reasoning?

Input Output

Intermediate steps / tokens

Reasoning

Slides adapted from Denny Zhou’s lecture “LLM Reasoning,” Stanford CS 25.

Input Reasoning tokens | Output tokens

What is the output when concatenating the last letter of each word in

“artificial intelligence”?

The answer is “le”. The last letter of “artificial” is “l”. The last

letter of “intelligence” is “e”. Concatenating “l”
and “e” leads to “le”. So the answer is “le”.

No reasoning Reasoning

Slides adapted from Denny Zhou’s lecture “LLM Reasoning,” Stanford CS 25.

● For any problems solvable by boolean circuits of size T,

constant-size transformers can solve it by generating O(T)

intermediate tokens

● If directly generating final answers, either requires a huge

depth or cannot solve at all

Why “Intermediate Tokens” / “Reasoning”
Matters?

Slides adapted from Denny Zhou’s lecture “LLM Reasoning,” Stanford CS 25.

Why “Intermediate Tokens” / “Reasoning”
Matters?

Slides adapted from Denny Zhou’s lecture “LLM Reasoning,” Stanford CS 25.

How reasoning evolves? – Post-Training

• Supervised Fine-Tuning (SFT)

• “memorization”

• Reinforcement Learning (RL)

• “generalization”

Supervised Fine-Tuning (SFT)

• “memorization”

• problem | step by step solution | output
-> max likelihood of both solution and answer

• “step by step solution | output ” comes from human or 3P models

• Highly depends on data quantity and quality, hard to generalize

Reinforcement Learning (RL)

• “generalization”

• problem | step by step solution | output
-> max likelihood of corrected outputs only (reinforcement)

• step by step solution <- generated by model itself

• Verification is the key!

• Easy for verifiable problems

Evolution of LLM Reasoning

Evolution of LLM Reasoning

• Simple tasks & text generation (~40% capability)

• Chain-of-thought (CoT) for complex reasoning (~50% capability)

• Self-consistency & majority voting (~60% capability)

• Long-context reasoning models (~80% capability)

• Test-time scaling / Parallel thinking (~90% capability)

LLMs Can Reason, But at What Cost?

Base Model

CoT

Self-
Consistency

Reasoning
Model

TTS

40%

50%

60%

80%

90%

1K
5K

40K

64K

10M

R
ea

so
n

in
g

C
ap

ab
ili

ty
To

ke
n

 C
o

st

How Much Compute Are We Really Using?

Real-world impact:

• Compute: ~500× more tokens vs single rollout

• Cost: $1,000 → $500,000 per complex problem

• Latency: 2 seconds → 20 minutes

• Bottom line: Can we do better than just 'generate more and hope'?

What is TTS (Test-Time Scaling)?

• Unlike human reasoning, LLM generates thoughts by decoding tokens one by one

• Decoding is stochastic (except for temp=0), stochasticity matters

Problem/Prompt
(fixed)

LLM
(fixed)

+

It always outputs a fixed thinking distribution!

we
(common

tokens)

theorem 1

theorem 2

What is TTS (Test-Time Scaling)?

• Unlike human reasoning, LLM generates thoughts by decoding tokens one by one

• Decoding is stochastic (except for temp=0), stochasticity matters

Problem/Prompt
(fixed)

LLM
(fixed)

+

A single rollout is one of the realization

apply theorem 1….
best answer is 102

theorem 1

theorem 2

What is TTS (Test-Time Scaling)?

• Unlike human reasoning, LLM generates thoughts by decoding tokens one by one

• Decoding is stochastic (except for temp=0), stochasticity matters

Problem/Prompt
(fixed)

LLM
(fixed)

+

Sampling multiple rollouts to recover true distribution

best answer is 102

theorem 1

theorem 2

know what LLM actually thinks

best answer is 53

best answer is 102

Self-Consistency
Generate multiple reasoning paths
(e.g., 8–64 attempts)
Use diverse sampling/temperature
per path
Vote on final answer across paths
Key: Diverse paths catch individual
errors

Parallel Thinking (Large-Scale Self-Consistency for fixed-
form Answers)

Massive parallel generation (e.g., 512 attempts)
Majority voting on final answers
Key: More attempts ⇒ higher accuracy
Scaling: Run self-consistency at much larger scale

What is TTS (Test-Time Scaling)?
Additional compute/tokens during inference to improve reasoning

Advanced Method:
Deep Think by Gemini (multi-turn with aggregation)

Test-Time Scaling Wastes Computation

• Hard problems: diminishing returns

• ~60% of traces fail early (low confidence)

• ~25% start okay, derail mid-way

• ~10% mostly correct with minor errors

• ~5% high quality throughout

⇒ Many traces are hallucinated or random guesses

• Easy problems: redundant solutions

• Dozens/hundreds of near-identical correct traces

• First few traces suffice for consensus

⇒ Why generate 512 when ~8 would suffice?

Current scaling ignores problem difficulty and trace quality

Like human reasoning, LLM can make
mistakes for a single reasoning attempt

Models Signal Uncertainty Through Token
Distributions
• Token-level metrics:

• Token Entropy:

• Token Confidence:

• High-confidence (sharp) distributions ⇒ usually correct tokens

• Low-confidence (flat) distributions ⇒model is uncertain about next step

token index

p
ro

b

token index

p
ro

b

Wait, let me double check my previous
results…I should rethink step 1 again…Or I
should think again about it.

Let me think about this problem step by
step. Step 1: Pythagorean triple formula: All
primitive triples can be generated by 𝑥 =
𝑚2 − 𝑛2 ….

Aggregating Token Uncertainty for Trace
Quality Assessment
• From tokens to trace quality:

• Average Trace Confidence: C_avg = (1/N) ∑ C_i (self-certainty proposed by Kang et al.)

• Average over entire trace tokens

Limitation: global averaging can miss local failures

Key Questions Left

• Better Confidence Measurement:

• Global trace-level uncertainty is insufficient

• How to track local uncertainty in reasoning steps?

• Smart Early Stopping:
• How to identify and stop unpromising traces early?
• Detect failures in real-time to save compute

• Adaptive Compute Allocation:
• Allocate less compute to easy problems, more to hard ones

• Move beyond fixed budgets to dynamic resource allocation

DeepConf: Deep Think with Confidence

Methodology:

• 1) New Confidence Measures: group confidence, bottom-10%, tail confidence

• 2) Offline Mode: filter & confidence-weighted voting on full traces

• 3) Online Mode: real-time monitoring, early stop low-confidence traces

Better accuracy with dramatically fewer tokens

Yichao Fu, Xuewei Wang, Yuandong Tian, Jiawei Zhao

Break?

DeepConf: Deep Think with Confidence

Methodology:

• 1) New Confidence Measures: group confidence, bottom-10%, tail confidence

• 2) Offline Mode: filter & confidence-weighted voting on full traces

• 3) Online Mode: real-time monitoring, early stop low-confidence traces

Better accuracy with dramatically fewer tokens

Yichao Fu, Xuewei Wang, Yuandong Tian, Jiawei Zhao

Confidence Metrics for Tracking Local Changes

Local patterns outperform global averages for detecting failures

Better Trace Quality Estimation

Confidence distributions by different measures

Confidence Filtering

Choose Your Trade-off

• DeepConf-Low (Keep Top 10%): aggressive filtering; suitable for highly
confident and correct problems

• DeepConf-High (KeepTop 90%): conservative filtering; only remove
small amount of ultra low confident traces for better majority voting

Offline Mode: Better Voting with Full Traces

• Analyze completed traces for quality estimation

• Compute group confidence -> trace confidence (bottom-10%, or tail)

• Filter out low-confidence reasoning paths

• Weight votes by per-trace confidence quality

• Emphasize high-confidence solutions in final decision

Offline DeepConf

• AIME 2025 + GPT-OSS-120B: 99.9% accuracy (vs 97.0% MV baseline)

Offline DeepConf

Consistent scaling for larger voting size compared to Majority Vote

Online DeepConf

• Early-Stopping based on threshold

• Simple detection during token generation

How to determine threshold?

Change to Running Lowest Group Conf!

Online DeepConf

• Every prompt has own conf threshold determined by offline warmup

• Once threshold is set, start generation and early stopping in parallel

• Simple problem uses less traces, while hard problem uses more (max)

• Pre-set a threshold. (95%, uniform across models and datasets)

• -> model does not reach a consensus, keep generation

Adaptive Sampling

How Online DeepConf Works

• Warmup: generate 16 traces → set threshold

• For each new trace: monitor 2048-token confidence window

• If confidence < threshold: stop; else continue

• Stop all generation once consensus ratio is reached among completed
high-confidence traces

Online DeepConf

Online DeepConf on GPT-OSS-120B

• Token usage reductions across datasets: −56% to −84.7%

• HMMT 2025: −76% tokens; BRUMO: −73% tokens

• Often improved accuracy while using fewer tokens

Benefits for real deployment

• Efficient Parallel Thinking Method
• Up to ~70% reduction in inference costs

• often better than baseline

• 10-30X more costs than single request (relatively tolerable)

• Make parallel thinking work in practice

• Better Self-Consistency
• Voting based on confident traces only

Easy to Deploy

• Minimal code changes (~50 lines) in serving framework

• Works with existing frameworks (e.g., vLLM) (Working with others as
well)

• No model training / hyperparameter tuning required

• Simple but effective

Available Now

• Project Page: jiaweizzhao.github.io/deepconf

• Code: github.com/facebookresearch/deepconf

Efficient Reinforcement Learning

• GRESO (GRPO with Efficient Selective Rollout)

• “Act only when it pays”

Future Work

• Freeform reasoning: confidence-weighted majority voting; dynamic
parallel thinking

• Fix 'confident but wrong': RL + reward modeling; penalize high
confidence + low accuracy

Thank you!

	Slide 1: Deep Think with Confidence
	Slide 2: Neural Networks - Foundation Models
	Slide 3: Large Language Models for Complex Reasoning
	Slide 4: What is LLM Reasoning?
	Slide 5: What is the output when concatenating the last letter of each word in “artificial intelligence”?
	Slide 6
	Slide 7
	Slide 8: How reasoning evolves? – Post-Training
	Slide 9: Supervised Fine-Tuning (SFT)
	Slide 10: Reinforcement Learning (RL)
	Slide 13: Evolution of LLM Reasoning
	Slide 14: LLMs Can Reason, But at What Cost?
	Slide 15: How Much Compute Are We Really Using?
	Slide 16: What is TTS (Test-Time Scaling)?
	Slide 17: What is TTS (Test-Time Scaling)?
	Slide 18: What is TTS (Test-Time Scaling)?
	Slide 19
	Slide 20: Test-Time Scaling Wastes Computation
	Slide 21: Models Signal Uncertainty Through Token Distributions
	Slide 22: Aggregating Token Uncertainty for Trace Quality Assessment
	Slide 23: Key Questions Left
	Slide 24: DeepConf: Deep Think with Confidence
	Slide 25: Break?
	Slide 26: DeepConf: Deep Think with Confidence
	Slide 27: Confidence Metrics for Tracking Local Changes
	Slide 28: Better Trace Quality Estimation
	Slide 29: Confidence distributions by different measures
	Slide 30: Confidence Filtering
	Slide 32: Choose Your Trade-off
	Slide 33: Offline Mode: Better Voting with Full Traces
	Slide 34: Offline DeepConf
	Slide 35: Offline DeepConf
	Slide 36: Online DeepConf
	Slide 37: How to determine threshold?
	Slide 38: Online DeepConf
	Slide 39
	Slide 40: How Online DeepConf Works
	Slide 41: Online DeepConf
	Slide 42: Online DeepConf on GPT-OSS-120B
	Slide 43: Benefits for real deployment
	Slide 44: Easy to Deploy
	Slide 45: Available Now
	Slide 46: Efficient Reinforcement Learning
	Slide 47: Future Work
	Slide 48: Thank you!

