Deep Think with Confidence

Leveraging Internal Signals for Efficient LLM Reasoning

Jiawei Zhao

Research Scientist, Meta FAIR

Neural Networks - Foundation Models

Conversational Al

Content Generation

Al Agents

Planning

Large Language Models for Complex Reasoning

- Current capabilities:
- Mathematical problem solving (AIME)
- Code generation and debugging
- Scientific hypothesis formation
- Multi-step logical reasoning

What is LLM Reasoning?

What is the output when concatenating the last letter of each word in "artificial intelligence"?

The answer is "le".

Reasoning

letter of "intelligence" is "e". Concatenating "I" and "e" leads to "le". So the answer is "le".

Why "Intermediate Tokens" / "Reasoning" Matters?

- For any problems solvable by boolean circuits of size T,
 constant-size transformers can solve it by generating O(T) intermediate tokens
- If directly generating final answers, either requires a huge depth or cannot solve at all

Why "Intermediate Tokens" / "Reasoning" Matters?

How reasoning evolves? — Post-Training

- Supervised Fine-Tuning (SFT)
- "memorization"

- Reinforcement Learning (RL)
- "generalization"

Supervised Fine-Tuning (SFT)

- "memorization"
- problem | step by step solution | output
 - -> max likelihood of both solution and answer
- "step by step solution | output" comes from human or 3P models

Highly depends on data quantity and quality, hard to generalize

Reinforcement Learning (RL)

- "generalization"
- problem | step by step solution | output
 - -> max likelihood of corrected outputs only (reinforcement)
- step by step solution <- generated by model itself

- Verification is the key!
- Easy for verifiable problems

Evolution of LLM Reasoning

Evolution of LLM Reasoning

- Simple tasks & text generation (~40% capability)
- Chain-of-thought (CoT) for complex reasoning (~50% capability)
- Self-consistency & majority voting (~60% capability)
- Long-context reasoning models (~80% capability)
- Test-time scaling / Parallel thinking (~90% capability)

LLMs Can Reason, But at What Cost?

How Much Compute Are We Really Using?

Real-world impact:

- Compute: ~500× more tokens vs single rollout
- Cost: $$1,000 \rightarrow $500,000$ per complex problem
- Latency: 2 seconds → 20 minutes

• Bottom line: Can we do better than just 'generate more and hope'?

- Unlike human reasoning, LLM generates thoughts by decoding tokens one by one
- Decoding is stochastic (except for temp=0), stochasticity matters

- Unlike human reasoning, LLM generates thoughts by decoding tokens one by one
- Decoding is stochastic (except for temp=0), stochasticity matters

- Unlike human reasoning, LLM generates thoughts by decoding tokens one by one
- Decoding is stochastic (except for temp=0), stochasticity matters

Additional compute/tokens during inference to improve reasoning

Self-Consistency

Generate multiple reasoning paths (e.g., 8–64 attempts)
Use diverse sampling/temperature per path

Vote on final answer across paths Key: Diverse paths catch individual errors

Parallel Thinking (Large-Scale Self-Consistency for fixedform Answers)

Massive parallel generation (e.g., 512 attempts)

Majority voting on final answers

Key: More attempts \Rightarrow higher accuracy

Scaling: Run self-consistency at much larger scale

Advanced Method:

Deep Think by Gemini (multi-turn with aggregation)

Test-Time Scaling Wastes Computation

- Hard problems: diminishing returns
- ~60% of traces fail early (low confidence)
- ~25% start okay, derail mid-way
- ~10% mostly correct with minor errors
- ~5% high quality throughout
- ⇒ Many traces are hallucinated or random guesses
- Easy problems: redundant solutions
- Dozens/hundreds of near-identical correct traces
- First few traces suffice for consensus
- ⇒ Why generate 512 when ~8 would suffice?

Current scaling ignores problem difficulty and trace quality

Like human reasoning, LLM can make mistakes for a single reasoning attempt

Models Signal Uncertainty Through Token Distributions

- Token-level metrics:
- Token Entropy: $H_i = -\sum P_i(j) \log P_i(j)$
- Token Confidence: $C_i = -\frac{1}{k} \sum_{j=1}^k \log P_i(j)$
- High-confidence (sharp) distributions ⇒ usually correct tokens

Let me think about this problem step by step. Step 1: Pythagorean triple formula: All primitive triples can be generated by $x = m^2 - n^2$

Wait, let me double check my previous results...I should rethink step 1 again...Or I should think again about it.

Aggregating Token Uncertainty for Trace Quality Assessment

- From tokens to trace quality:
- Average Trace Confidence: $C_{avg} = (1/N) \sum C_{i}$ (self-certainty proposed by Kang et al.)
- Average over entire trace tokens

Question

Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Correct Solution:

Kylar needs to pay 64 dollars for the 16 glasses, as each pair costs \$8 and he buys 8 pairs.

```
Wrong Step: Understanding the question as a geometric series.

Response 1: Reasoning 1 + Answer: 12.5 Self-Certainty: 17.13

Response 2: Reasoning 2 + Answer: 64 Self-Certainty: 16.94

Response 3: Reasoning 3 + Answer: 64 Self-Certainty: 16.36

Response 4: Reasoning 4 + Answer: 50 Self-Certainty: 16.21

Response 5: Reasoning 5 + Answer: 50 Self-Certainty: 16.13

Response 6: Reasoning 6 + Answer: 50 Self-Certainty: 15.87

Wrong Step: Calculating the remaining 15 glasses at $3 each.
```

Limitation: global averaging can miss local failures

Key Questions Left

- **Q** Better Confidence Measurement:
- Global trace-level uncertainty is insufficient
- How to track local uncertainty in reasoning steps?
- How to identify and stop unpromising traces early?
- Detect failures in real-time to save compute
- Adaptive Compute Allocation:
- Allocate less compute to easy problems, more to hard ones
- Move beyond fixed budgets to dynamic resource allocation

DeepConf: Deep Think with Confidence

Methodology:

- 1) New Confidence Measures: group confidence, bottom-10%, tail confidence
- 2) Offline Mode: filter & confidence-weighted voting on full traces
- 3) Online Mode: real-time monitoring, early stop low-confidence traces

Better accuracy with dramatically fewer tokens

Break?

DeepConf: Deep Think with Confidence

Methodology:

- 1) New Confidence Measures: group confidence, bottom-10%, tail confidence
- 2) Offline Mode: filter & confidence-weighted voting on full traces
- 3) Online Mode: real-time monitoring, early stop low-confidence traces

Better accuracy with dramatically fewer tokens

Confidence Metrics for Tracking Local Changes

Local patterns outperform global averages for detecting failures

Better Trace Quality Estimation

Confidence distributions by different measures

Confidence Filtering

Choose Your Trade-off

- DeepConf-Low (Keep Top 10%): aggressive filtering; suitable for highly confident and correct problems
- DeepConf-High (KeepTop 90%): conservative filtering; only remove small amount of ultra low confident traces for better majority voting

Offline Mode: Better Voting with Full Traces

- Analyze completed traces for quality estimation
- Compute group confidence -> trace confidence (bottom-10%, or tail)
- Filter out low-confidence reasoning paths
- Weight votes by per-trace confidence quality

$$V(a) = \sum_{t \in T} C_t \cdot I(\text{answer}(t) = a)$$

Emphasize high-confidence solutions in final decision

$$\hat{a} = \arg\max_{a} V(a)$$

Offline DeepConf

Model	Dataset	Pass @1	Cons @512	Mean @512	Bottom-10 Conf @512		Tail Conf @512	
Retention Ratio					90%	10%	90%	10%
	AIME24	83.0	86.7	86.7	86.7	93.3	86.7	93.3
DeepSeek-8B	AIME25	76.9	82.3	82.3	81.0	87.5	81.3	87.4
	BRUMO25	80.0	93.2	93.3	93.3	93.3	93.3	93.3
	HMMT25	58.1	69.6	69.9	69.9	79.5	69.9	83.9
	GPQA-D	62.8	72.5	72.5	71.2	70.6	72.8	74.0
	AIME24	80.6	85.3	85.7	86.0	90.8	86.8	89.4
	AIME25	71.7	80.1	80.0	80.1	80.2	80.1	80.2
Qwen3-32B	BRUMO25	78.0	93.3	93.3	93.3	93.3	93.3	91.2
	HMMT25	51.9	63.3	63.3	63.2	63.3	63.4	62.9
	GPQA-D	68.9	72.2	72.3	70.0	70.0	72.8	72.5
	AIME24	91.9	96.7	96.7	96.3	96.5	96.7	97.4
GPT-OSS-120B	AIME25	91.8	97.0	97.1	96.9	98.1	97.8	99.9
	BRUMO25	75.6	86.7	86.8	85.3	82.9	89.9	89.4
	HMMT25	78.9	92.9	92.9	92.9	90.5	92.9	88.9

• AIME 2025 + GPT-OSS-120B: 99.9% accuracy (vs 97.0% MV baseline)

Offline DeepConf

Consistent scaling for larger voting size compared to Majority Vote

Online DeepConf

- Early-Stopping based on threshold
- Simple detection during token generation

How to determine threshold?

Trace Confidence Measurements

Confidence Filtering

Conf-Weighted Majority Voting

Online DeepConf

- Every prompt has own conf threshold determined by offline warmup
- Once threshold is set, start generation and early stopping in parallel

Adaptive Sampling

Simple problem uses less traces, while hard problem uses more (max)

$$\beta = \frac{V(\hat{a})}{\sum_{a} V(a)}$$

- Pre-set a threshold \mathcal{T} (95%, uniform across models and datasets)
- eta < au -> model does not reach a consensus, keep generation

How Online DeepConf Works

- Warmup: generate 16 traces → set threshold
- For each new trace: monitor 2048-token confidence window
- If confidence < threshold: stop; else continue
- Stop all generation once consensus ratio is reached among completed high-confidence traces

Online DeepConf

Online DeepConf on GPT-OSS-120B

- Token usage reductions across datasets: -56% to -84.7%
- HMMT 2025: -76% tokens; BRUMO: -73% tokens
- Often improved accuracy while using fewer tokens

Benefits for real deployment

- Efficient Parallel Thinking Method
 - Up to ~70% reduction in inference costs
 - often better than baseline
 - 10-30X more costs than single request (relatively tolerable)
 - Make parallel thinking work in practice
- Better Self-Consistency
 - Voting based on confident traces only

Easy to Deploy

- Minimal code changes (~50 lines) in serving framework
- Works with existing frameworks (e.g., vLLM) (Working with others as well)
- No model training / hyperparameter tuning required
- Simple but effective

Available Now

- Project Page: jiaweizzhao.github.io/deepconf
- Code: github.com/facebookresearch/deepconf

Efficient Reinforcement Learning

• GRESO (GRPO with Efficient Selective Rollout)

"Act only when it pays"

Future Work

• Freeform reasoning: confidence-weighted majority voting; dynamic parallel thinking

• Fix 'confident but wrong': RL + reward modeling; penalize high confidence + low accuracy

Thank you!