Deep Think with Confidence

Leveraging Internal Signals for Efficient LLM Reasoning

Jiawei Zhao
Research Scientist, Meta FAIR

N

Meta

Neural Networks - Foundation Models

Conversational Al

Standard Prompting

tennis balls does he have now?
A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought & more, how many apples
do they have?

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

A: The answer is 27. x

)

Content Generati

Chain of Thought Prompting

~_ Input \
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

v

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+ 6 =9. The

answer is 9. o

- J/

Reasoning

o

n Al Agents

. -
7

=

)

A

Planning

Large Language Models for Complex
Reasoning

* Current capabilities:

 Mathematical problem solving (AIME)
* Code generation and debugging

* Scientific hypothesis formation

* Multi-step logical reasoning

What is LLM Reasoning?

Intermediate steps / tokens
Input - Output

Reasoning

,

Input —— ¢ — Reasoning tokens | Output tokens

What is the output when concatenating the last letter of each word in

“artificial intelligence”?

No reasoning Reasoning

The last letter of “artificial” is “I”. The last

letter of “intelligence” is “e”. Concatenating
and “e” leads to “le”. So the answer is “le”.

The answer is “le”.

“I”

Slides adapted from Denny Zhou'’s lecture “LLM Reasoning,” Stanford CS 25.

Why “Intermediate Tokens” / “Reasoning”
Matters?

e Forany problems solvable by boolean circuits of size T,
constant-size transformers can solve it by generating O(T)

intermediate tokens
e If directly generating final answers, either requires a huge

depth or cannot solve at all

Why “Intermediate Tokens” / “Reasoning”
Matters?

How reasoning evolves? — Post-Training

e Supervised Fine-Tuning (SFT)

* “memorization”

e Reinforcement Learning (RL)

* “generalization”

Supervised Fine-Tuning (SFT)

* “memorization”

e problem | step by step solution | output
-> max likelihood of both solution and answer

 “step by step solution | output ” comes from human or 3P models

* Highly depends on data quantity and quality, hard to generalize

Reinforcement Learning (RL)

* “generalization”

e problem | step by step solution | output
-> makx likelihood of corrected outputs only (reinforcement)

* step by step solution <- generated by model itself

a DeepSeek-R1-Zera AIME accuracy during training b DeepSeek-R1-Zero average length per response during training
09 —e— r1-zero-pass@1 20,000
—e— rl1-zero-cons@16
0.8 -~ Human participant 17,500 -
* Verification is the key!
<]
erirication IS the Ke 2
y * 0.6 8 12,500 -
z @
@ a
L ol 3 05 £ 10,000
bt o
* Easy for verifiable problems ¢ :
044 IAL :.f, 7,500
g
< 5,000
0.3
2,500
0.2
O -
T T T T T T T T T T T T
0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000

Steps Steps

Evolution of LLM Reasoning

Evolution of LLM Reasoning

e Simple tasks & text generation (~40% capability)

* Chain-of-thought (CoT) for complex reasoning (~*50% capability)
e Self-consistency & majority voting (~60% capability)

e Long-context reasoning models (~*80% capability)

* Test-time scaling / Parallel thinking (~90% capability)

LLMs Can Reason, But at What Cost?

90%

L

80% 10M

[Reasoning]
Model

Reasoning Capability

60% 64K
Self-
i 50% [Consistency]
Al c0% CoT !
[Base Model
5K

1K

150D U0l

How Much Compute Are We Really Using?

Real-world impact:
 Compute: “500x more tokens vs single rollout

 Cost: $1,000 = $500,000 per complex problem
* Latency: 2 seconds - 20 minutes

e Bottom line: Can we do better than just 'generate more and hope'?

What is TTS (Test-Time Scaling)?

* Unlike human reasoning, LLM generates thoughts by decoding tokens one by one

e Decoding is stochastic (except for temp=0), stochasticity matters

It always outputs a fixed thinking distribution!
theorem 1

we
(common
tokens)

Problem/Prompt + %‘;
(fixed) ’

LLM

(fixed)

theorem 2

What is TTS (Test-Time Scaling)?

* Unlike human reasoning, LLM generates thoughts by decoding tokens one by one

e Decoding is stochastic (except for temp=0), stochasticity matters

A single rollout is one of the realization
theorem 1

N —

applyftheorem 1....

; best answer is 102
Problem/Prompt + %%‘;

(fixed) ’
LLM
(fixed)

theorem 2

What is TTS (Test-Time Scaling)?

* Unlike human reasoning, LLM generates thoughts by decoding tokens one by one

e Decoding is stochastic (except for temp=0), stochasticity matters

Sampling multiple rollouts to recover true distribution
theorem 1 know what LLM actually thinks

best answer is 102

Problem/Prompt + C%‘;
(fixed) best an§weris 53

LLM theorem 2
(fixed)

best answer is 102

What is TTS (Test-Time Scaling)?

Additional compute/tokens during inference to improve reasoning

: Self-consistenc Sample a diverse set of Marginalize out reasoning paths
SEIf'CO"SlStency ¥ reasoning paths P 2 to aggregate final answers
. . e —— S i
Generate multiple reasoning paths /G fthere are 3 cars n the parking "\ Shehas16-3-4=9eggs |) \
lot and 2 more cars arrive, how many left. So she makes $2* 9= | The answer is $18.
(e . g,, 8—64 atte m ptS) cars are in the parking lot? $18 per day. I \
. . A:There are 3 cars‘in the parking lot i ~ \
Use diverse sampling/temperature ey Smorpaimis: Nowlh gt This means she she sels the
h + 2 =95 cars. The answer Is 5. remainder for $2 * (16 A 3)[The answer is $26. V
p er pat Q: Janet’s ducks lay 16 eggs per day. Language = $26 per day. " / The answer is $18
. She eats three for breakfast every model - 3
Vote on final answer across paths morning and bakes muffins for her g She eats 3 for breakfast, so |)
. . L. friends every day with four. She sells she has 16 - 3 = 13 left. Then |
Key: Diverse paths catch individual the remainder for $2 per egg. How she bakes muffins, Soshe | The answer is $18.
much does she make every day? has 13 - 4 = 9 eggs left. So |
errors Q‘ she has 9 eggs * $2 = $18. |

Parallel Thinking (Large-Scale Self-Consistency for fixed-
form Answers)
Massive parallel generation (e.g., 512 attempts)
Majority voting on final answers Advanced Method:

Key: More attempts = higher accuracy Deep Think by Gemini (multi-turn with aggregation)
Scaling: Run self-consistency at much larger scale

Test-Time Scaling Wastes Computation

Hard problems: diminishing returns
~60% of traces fail early (low confidence)
~25% start okay, derail mid-way

~10% mostly correct with minor errors
~5% high quality throughout

= Many traces are hallucinated or random guesses

Easy problems: redundant solutions
Dozens/hundreds of near-identical correct traces
First few traces suffice for consensus

= Why generate 512 when ~8 would suffice?

Current scaling ignores problem difficulty and trace quality

Like human reasoning, LLM can make
mistakes for a single reasoning attempt

Models Signal Uncertainty Through Token
Distributions

* Token-level metrics:

Token Entropy: i = —ZPz'(j)logPi(j)

k
Token Confidence: ¢; = -+ > "log P;(j) ot
k J=1 o
High-confidence (sharp) distributions = usually correct tokensa/
/Let me think about this problem step by) token index
step. Step 1: Pythagorean triple formula: All
primitive triples can be generated by x =
\mz —n? .. P 3
o
Low-confidence (flat) distributions = model is uncertain about next step 8
4) —
Wait, let me double check my previous = >
results...I should rethink step 1 again...Or | token index

should think again about it.
- /

Aggregating Token Uncertainty for Trace
Quality Assessment

* From tokens to trace quality:
» Average Trace Confidence: C_avg = (1/N) > C i (self-certainty proposed by Kang et al.)
* Average over entire trace tokens

Question — Y Wrong Step: Understanding the question as a geometric series.

Kylar went to the store to buy glasses for his new apartment. One

glgss costs $5, but every second glass costs only 60% of the —= Response 2: Reasoning 2 + Answer: 64 Self-Certainty: 16.94
price. Kylar wants to buy 16 glasses. How much does he need to
pay for them? Response 3: Reasoning 3 + Answer: 64 Self-Certainty: 16.36

Response 4: Reasoning 4 + Answer: 50 Self-Certainty: 16.21

Correct Solution: Response 5: Reasoning 5 + Answer: 50 Self-Certainty: 16.13
Response 6: Reasoning 6 + Answer: 50 Self-Certainty: 15.87

Kylar needs to pay 64 dollars for the 16 glasses, as each pair
costs $8 and he buys 8 pairs. — * Wrong Step: Calculating the remaining 15 glasses at $3 each.

Limitation: global averaging can miss local failures

Key Questions Left

@, Better Confidence Measurement:
Global trace-level uncertainty is insufficient
How to track local uncertainty in reasoning steps?

] Smart Early Stopping:
How to identify and stop unpromising traces early?
Detect failures in real-time to save compute

Adaptive Compute Allocation:
Allocate less compute to easy problems, more to hard ones
Move beyond fixed budgets to dynamic resource allocation

Yichao Fu, Xuewei Wang, Yuandong Tian, Jiawei Zhao

DeepConf: Deep Think with Confidence

Accuracy on AIME 2025 Generated Tokens on AIME 2025

(Offline) (Online)
99.9 *reported from the original sources > [deepconf-low@512 [deepconf-high@512 [cons@512
100 A 97.0 94.6 o 4.01
91.8 92.7 : S 4 .
3 901 o 87.4 87.5 x 3.23
= o 82.3 " 3 2.37
o 804 ® N o 76.9 I 2.43 (-40.9%)
© € 0 — in] ® =) 1.42 1.61
5 S © @ | @ N 3 © i S 21 o 1.14 (-33.7%) 1.24
o 704 2 £] c N = = 0 n (-56.0%) : _ 0
v} 5 IS © o ® a @ o c (-52.9%) (-69.0%)
< g [v] a v a 9 g_ Q e Q 1 0.49
60 1 T o 5 8 X (-84.7%)
s SN
30 ' PT-055-120B 3-328 DeepSeek-8B
@ & & ® @ @ R {g* & GPT-055-120 Qwen3-3 eepSeek-8
NN AN Y N N &) & &
G ST G & & & e~ SO O
o et P @QC’ @Qc’ Q,Q% Q ¥ «° (\0" 00&
(;2’\ Ny (32« Ny G{\ N\ o g & & &S N

Methodology:

* 1) New Confidence Measures: group confidence, bottom-10%, tail confidence
» 2) Offline Mode: filter & confidence-weighted voting on full traces
* 3) Online Mode: real-time monitoring, early stop low-confidence traces

Better accuracy with dramatically fewer tokens

Break?

Yichao Fu, Xuewei Wang, Yuandong Tian, Jiawei Zhao

DeepConf: Deep Think with Confidence

Accuracy on AIME 2025 Generated Tokens on AIME 2025

(Offline) (Online)
99.9 *reported from the original sources > [deepconf-low@512 [deepconf-high@512 [cons@512
100 A 97.0 94.6 o 4.01
91.8 92.7 : S 4 .
3 901 o 87.4 87.5 x 3.23
= o 82.3 " 3 2.37
o 804 ® N o 76.9 I 2.43 (-40.9%)
© € 0 — in] ® =) 1.42 1.61
5 S © @ | @ N 3 © i S 21 o 1.14 (-33.7%) 1.24
o 704 2 £] c N = = 0 n (-56.0%) : _ 0
v} 5 IS © o ® a @ o c (-52.9%) (-69.0%)
< g [v] a v a 9 g_ Q e Q 1 0.49
60 1 T o 5 8 X (-84.7%)
s SN
30 ' PT-055-120B 3-328 DeepSeek-8B
@ & & ® @ @ R {g* & GPT-055-120 Qwen3-3 eepSeek-8
NN AN Y N N &) & &
G ST G & & & e~ SO O
o et P @QC’ @Qc’ Q,Q% Q ¥ «° (\0" 00&
(;2’\ Ny (32« Ny G{\ N\ o g & & &S N

Methodology:

* 1) New Confidence Measures: group confidence, bottom-10%, tail confidence
» 2) Offline Mode: filter & confidence-weighted voting on full traces
* 3) Online Mode: real-time monitoring, early stop low-confidence traces

Better accuracy with dramatically fewer tokens

Confidence Metrics for Tracking Local Changes

. c<16 16 <c <18 18<c <20 20<c¢
—— Token Confidence ¢

Ci=—-1 Z};l logP;(j) where logP;(j) is one of the top-k token logprobs at token i

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated by x = m?

— Group Confidence

— n? ... But wait, let me think again ...The final answer is 109.

C; =avg(Cyx-n+1,Cx—n+2, ---» Ck—1, Cx) where current token C, group size n

—n? ... But wait, let me think again ...The final answer is 109.

|Let me think about this problem step by stf_’p. Step‘1: Pythagorean triple formula: all primitive triqles can be generated by x = m?

. . current Cy current Cy
Tail Confidence

Ciait = aV8(Cn-k+1, CN—Kk+2, ---» Cn-1, Cn) Where last tokens K, total tokens N

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated byx = m?

— nzl... But wait, let me think again ...The final answer is 109.l

Last K tokens

Local patterns outperform global averages for detecting failures

Better Trace Quality Estimation

. c=16 l6<c<18 18<c <20 20<¢
—— Token Confidence ¢

-1 Z]k=1 logP;(j) where logP;(j) is one of the top-k token logprobs at token i

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated by x = m? — n? ... But wait, let me think again ...The final answer is 109.

— Group Confidence
C; =avg(Cx—n+1,Cx—n+2, -+» Ck—1, Cx) where current token Cy, group size n

.. But wait, let me think again ...The final answer is 109.

Let me think about this problem step by Stff’ Step 1: Pythagorean triple formula: all primitive tnales can be generated by x = m? — n?

. . current Cy current Cy
— Tail Confidence

Ciait = aV8(Cn—_k+1, CN—k+2, -»Cn—1, Cny) Where last tokens K, total tokens N

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated byx = m? — n? ... But wait, let me think again ...The final answer is 109

Last K tokens

— Tail Conf: Ciy;;

/ Bottom 10% Group Conf: (o = avg(Cy, Cy, ..., Cx—1, Cx)

Bottom 10% of all C;

\ Lowest Group Conf: Cyy o5t = méré Ce J

—— Average Trace Conf: C,,; = '/y ¥N .G

Trace Confidence Measurements

Confidence distributions by different measures

Mean Confidence Bottom 10% Confidence Tail Confidence
T T T T T
mm Correct i 1 | mmm Correct i B Correct

> W Incorrect > 2000 1 | mm Incorrect > 2000 I Incorrect
O 2000 4 == Correct Mean @] ! L=~ correct Mean @] == Correct Mean
QCJ = = Incorrect Mean % = = Incorrect Mean GCJ 1500 = = Incorrect Mean
3 | 3 3 1000 -
D 1000 1 3 o
el o o
T e = 500 -

0- 0-

14 16 18 20 22 10 12 14 16 18 20 22 10 12 14 16 18 20

Confidence Confidence Confidence

Confidence Filtering

. c=16 l6<c<18 18<c <20 20<¢
—— Token Confidence ¢

-1 Z]k=1 logP;(j) where logP;(j) is one of the top-k token logprobs at token i

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated by x = m? — n? ... But wait, let me think again ...The final answer is 109.

— Group Confidence
C; =avg(Cx—n+1,Cx—n+2, -+» Ck—1, Cx) where current token Cy, group size n

Let me think about this problem step by Stff’ Step 1: Pythagorean triple formula: all primitive tnales can be generated by x = m?

—n? ... But wait, let me think again ...The final answer is 109.

. . current Cy current Cy
— Tail Confidence
Ciait = aV8(Cn—_k+1, CN—k+2, -»Cn—1, Cny) Where last tokens K, total tokens N

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated byx = m? — n? e .. But wait, let me think again ...The final answer is 109

Last K tokens
— TailConf: C,oiyy @ | mmmmmmmmm—mm—m e ——— oo B
The final answeris 109 C=17 4 low-‘lO‘VZI—— The final answer is 109
---------------------------- V(ia) =17

of them

9 high-90% E— The final answer is 109

=
a V(a) =15 = (17 + 13)/2
3
o
1]

% . = select one
/ Bottom 10% Group Conf: C;, avg(Co, Cq, ---:Ck—1- Ck-) R R
0,
Bottom 10% of all C; | wemmp T (e (orr

\ Lowest Group Conf: Cyy o5t = mm Ce

Gj€EG & The finalansweris 104 C=11

—— Average Trace Conf: C,,; = '/y ¥N .G

Trace Confidence Measurements Confidence Filtering Conf-Weighted Majority Voting

Choose Your Trade-off

* DeepConf-Low (Keep Top 10%): aggressive filtering; suitable for highly
confident and correct problems

* DeepConf-High (KeepTop 90%): conservative filtering; only remove
small amount of ultra low confident traces for better majority voting

Offline Mode: Better Voting with Full Traces

* Analyze completed traces for quality estimation

 Compute group confidence -> trace confidence (bottom-10%, or tail)
* Filter out low-confidence reasoning paths

* Weight votes by per-trace confidence quality

Via) = Z Cy - I(answer(t) = a)

teT

* Emphasize high-confidence solutions in final decision

a = argmax V (a)

Offline DeepConf

Model Dataset Pass Cons Mean Bottom-10 Conf Tail Conf
@1 @512 @512 @512 @512
Retention Ratio 90 % 10% 90% 10%

AIME24 83.0 86.7 86.7 86.7 93.3 86.7 933
AIME25 769 823 82.3 81.0 87.5 813 874
DeepSeek-8B BRUMO25 80.0 932 933 933 93.3 933 933
HMMT?25 58.1 69.6 69.9 699 79.5 69.9 839
GPQA-D 62.8 725 725 712 70.6 72.8 740

AIME24 80.6 853 85.7 86.0 90.8 86.8 894
AIME25 71.7 80.1 80.0 80.1 80.2 80.1 80.2
Qwen3-32B BRUMO25 78.0 933 933 933 93.3 933 091.2
HMMT?25 519 633 633 632 63.3 634 629
GPQA-D 68.9 722 723 70.0 70.0 728 725

AIME24 91.9 96.7 96.7 963 96.5 96.7 974
AIME?25 91.8 97.0 97.1 96.9 98.1 97.8 999
GPT-OSS-120B BRUMO25 75.6 86.7 86.8 85.3 82.9 89.9 894
HMMT?25 789 929 929 929 90.5 92,9 889

e AIME 2025 + GPT-0SS-120B: 99.9% accuracy (vs 97.0% MV baseline)

Offline DeepConf

AIME24 AIME25
S\i 65 04 Af‘_'
o ..
E / E —v-lvl........
] 80.0 -
9]
<
10° 10! 10?
Voting Budget Voting Budget

=@ - Keep Top 90% =@ Keep Top 10%

90.0

85.0 1

80.0

BRUMO25

""d
//fﬁéﬁ)/’/
10° 10! 10°
Voting Budget
Majority Voting === No Voting

80.0

70.0 1

60.0 1

HMMT_FEB25

Voting Budget

Consistent scaling for larger voting size compared to Majority Vote

Online DeepConf

Weighted Confidence Majority Voting

Parallel Thinking with DeepConf
17

[
16 \\//

15

A AN/

A

5k 10 15k 20k

Confidence

Token Index

* Early-Stopping based on threshold
* Simple detection during token generation

/f—»<

9

DeepConf, Python-like

conf list.append (compute conf (x.logprob))

gc = average (conf list[x-group size:x])

If gc >= threshold:
continue generation
else:
stop generation

_‘ early stop
- e,y @ — —————————— ==

25k 30k

How to determine threshold?

. c=16 l6<c<18 18<c <20 20<¢
—— Token Confidence ¢

Ci=—-1 Z]k=1 logP;(j) where logP;(j) is one of the top-k token logprobs at token i

Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated by x = m? — n? ... But wait, let me think again ...The final answer is 109.

— Group Confidence
C; =avg(Cx—n+1,Cx—n+2, -+» Ck—1, Cx) where current token Cy, group size n

|Lc-:-t me think about this problem step by stf_’p. Step‘1: Pythagorean triple formula: all primitive triales can be generated by x = m? — n? ... But wait, let me think again ...The final answer is 109.

current Cy current Cy
— Tail Confidence
Ciait = aV8(Cn—_k+1, CN—k+2, -»Cn—1, Cny) Where last tokens K, total tokens N
Let me think about this problem step by step. Step 1: Pythagorean triple formula: all primitive triples can be generated byx = m? — nzl... But wait, let me think again ...The final answer is 109'1

Last K tokens
— TailConf: C,oyy mmmmmm—m——— oo - - b
Thefinalansweris 109 C=17 4 low-‘lO‘VZI—— The final answer is 109
———————————————————————————— V(a) =17
° = select one
/ Bottom 10% Group Conf: C;, = avg(Cy, Cy, s Ci-1,Cy) S on R R 5
(o) . " .
high —90% |——The final answer is 109
Bottom 10% of all C; wmmp . . _ S
\\ The final answeris 109 C=13 :E; V(a) =15 = (17 + 13)/2
Lowest Group Conf: C = min C;. 3
| P lowest = .. €6 CJ Thefinalansweris 104 C=11 |2

—— Average Trace Conf: C,,; = Y/y 2iL, G

_ Trace Confidence Measurements Confidence Filtering Conf-Weighted Majority Voting
Change to Running Lowest Group Conf!

Online DeepConf

prob

)

Question:

Find the number
of integer
solutions x, y
with1< x,y <
100

where x2 +

y2 = z2for some
positive integer
z.

4
/

P e e

Let me think about this problem step by
step. Step 1: Pythagorean triple formula:

> All primitive triples can be generated by
tokenindex| y =m2 —n? ..

Wait, let me double check my previous
results...| should rethink step 1 again...Or
| should think again about it.

prob

token index

* Every prompt has own conf threshold determined by offline warmup

* Once threshold is set, start generation and early stopping in parallel

Trace 3

Trace 4

Trace 5

@suspiuon

Adaptive Sampling

e Simple problem uses less traces, while hard problem uses more (max)

V@)
S SRTT)

* Pre-set a threshold 7 (95%, uniform across models and datasets)

. B < T ->model does not reach a consensus, keep generation

How Online DeepConf Works

* Warmup: generate 16 traces - set threshold
* For each new trace: monitor 2048-token confidence window
* If confidence < threshold: stop; else continue

 Stop all generation once consensus ratio is reached among completed
high-confidence traces

Online DeepConf

confidence

17

16

5

14

1

11th problem in HMMT'25

Conf-Weighted Majority Vote

15k

token index

group confidence threshold
30k

Online DeepConf on GPT-0OSS-120B

= R AIME24 5 66 . AIME25 5 BRUMO25 > 68 HMMT25

o

— - 3.23 1.81 : 4.09
X 3 ot 4 2.78

w 2 1.20 2 (‘326/0) (_320%)

5 (-54.6%) 2 1.42 0.73

3. 033 0.49 (50.0%) 1 (72.8%) 21 997

© (-79.9%) 11 (-84.7%) ’_| (-76.2%)

% 0 0 I 0 0

[deepconf-low@512 = deepconf-high@512 [cons@512

AIME24 AIME25 BRUMO25 HMMT _FEB25
= 92.0 1 (‘ 86.0 - r./'—"' [= °
§ 93.0 75.0 - f/
> .
E 90.01 84.0 - 92.01 [
3
O 70.0 4 P IITTTT T -
O 88.0 91.0 - o
< 82.04 ¢ . ®
T '\A . T : T T T ‘.. s -l-. I. - . T T T T T T T T T T
0 1 2 3 0 1 2 3 4 0 1 2 3 0 1 2 3 4
#Tokens (1e8) #Tokens (1e8) #Tokens (1e8) #Tokens (1e8)
=@ DeepConf-low **®=+* DeepConf-high Majority Voting

* Token usage reductions across datasets: —=56% to -84.7%
* HMMT 2025: -76% tokens; BRUMO: -73% tokens

* Often improved accuracy while using fewer tokens

Benefits for real deployment

* Efficient Parallel Thinking Method

* Up to ~70% reduction in inference costs

e often better than baseline

e 10-30X more costs than single request (relatively tolerable)
* Make parallel thinking work in practice

e Better Self-Consistency
* Voting based on confident traces only

Easy to Deploy

* Minimal code changes (~50 lines) in serving framework

* Works with existing frameworks (e.g., vLLM) (Working with others as
well)

* No model training / hyperparameter tuning required
* Simple but effective

Available Now

* Project Page: jiaweizzhao.github.io/deepconf
* Code: github.com/facebookresearch/deepconf

Efficient Reinforcement Learning .

 GRESO (GRPO with Efficient Selective Rollout)

* “Act only when it pays”

J —&— P(Current | Previous)
é =&~ P(Previous | Current)
2 4 6 8 10

Training Epoch

(a)

Dynamic Sampling

Responses i
Prompt | = 000---00e i
Prompt 2 —> ® i
Prompt 3 =—>» E L ® E
Prompt 4 —> OCC) 000---00e i
Prompt 5 —> 000-D0@ !
Prompt 6 —>» ® i

[:] Effective Training Data D Wasted Generation

Qwen2.5-Math-1.5B

. 4.3Mfewer rollouts
54 ./..".‘-'/ e G a2
g, N ,
§ .-‘\.f . =
E 50 / .,",
g 174
ag{f
/-‘ —=- Baseline
46 .{", — Qurs
0 1 2 3 4 5 6 7 8
Rollout (M)
- ~ GRESO
Training Dynamics Responses
Epoch: | 2 3 4
Prompt | HiRinn @ —> 000---00
Prompt 2 Oofd ®
O 5
porpt3 D000 ® |3
L —
Ppompt4 [I[][][] '@ @— < |000---00
Prompt 5 DDDD Qi—> 000---00
Prompt 6 | |[1[]1[] ®
|:| Effective D Zero-variance 'r:: Exploration

(b)

Future Work

* Freeform reasoning: confidence-weighted majority voting; dynamic
parallel thinking

* Fix 'confident but wrong': RL + reward modeling; penalize high
confidence + low accuracy

Thank you!

	Slide 1: Deep Think with Confidence
	Slide 2: Neural Networks - Foundation Models
	Slide 3: Large Language Models for Complex Reasoning
	Slide 4: What is LLM Reasoning?
	Slide 5: What is the output when concatenating the last letter of each word in “artificial intelligence”?
	Slide 6
	Slide 7
	Slide 8: How reasoning evolves? – Post-Training
	Slide 9: Supervised Fine-Tuning (SFT)
	Slide 10: Reinforcement Learning (RL)
	Slide 13: Evolution of LLM Reasoning
	Slide 14: LLMs Can Reason, But at What Cost?
	Slide 15: How Much Compute Are We Really Using?
	Slide 16: What is TTS (Test-Time Scaling)?
	Slide 17: What is TTS (Test-Time Scaling)?
	Slide 18: What is TTS (Test-Time Scaling)?
	Slide 19
	Slide 20: Test-Time Scaling Wastes Computation
	Slide 21: Models Signal Uncertainty Through Token Distributions
	Slide 22: Aggregating Token Uncertainty for Trace Quality Assessment
	Slide 23: Key Questions Left
	Slide 24: DeepConf: Deep Think with Confidence
	Slide 25: Break?
	Slide 26: DeepConf: Deep Think with Confidence
	Slide 27: Confidence Metrics for Tracking Local Changes
	Slide 28: Better Trace Quality Estimation
	Slide 29: Confidence distributions by different measures
	Slide 30: Confidence Filtering
	Slide 32: Choose Your Trade-off
	Slide 33: Offline Mode: Better Voting with Full Traces
	Slide 34: Offline DeepConf
	Slide 35: Offline DeepConf
	Slide 36: Online DeepConf
	Slide 37: How to determine threshold?
	Slide 38: Online DeepConf
	Slide 39
	Slide 40: How Online DeepConf Works
	Slide 41: Online DeepConf
	Slide 42: Online DeepConf on GPT-OSS-120B
	Slide 43: Benefits for real deployment
	Slide 44: Easy to Deploy
	Slide 45: Available Now
	Slide 46: Efficient Reinforcement Learning
	Slide 47: Future Work
	Slide 48: Thank you!

